Decomposition of approaches of a general linear model with fixed parameters

نویسندگان

  • Bo Jiang
  • Yongge Tian
  • BO JIANG
چکیده

The well-known ordinary least-squares estimators (OLSEs) and the best linear unbiased estimators (BLUEs) under linear regression models can be represented by certain closed-form formulas composed by the given matrices and their generalized inverses in the models. This paper provides a general algebraic approach to relationships between OLSEs and BLUEs of the whole and partial mean parameter vectors in a constrained general linear model (CGLM) with fixed parameters by using a variety of matrix analysis tools on generalized inverses of matrices and matrix rank formulas. In particular, it establishes a variety of necessary and sufficient conditions for OLSEs to be BLUEs under a CGLM, which include many reasonable statistical interpretations on the equalities of OLSEs and BLUEs of parameter space in the CGLM. The whole work shows how to effectively establish matrix equalities composed by matrices and their generalized inverses and how to use them when characterizing performances of estimators of parameter spaces in linear models under most general assumptions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

Barley Productivity Decomposition in Iran: Comparison of TT, GI, MGI, and GTTI Approaches

In this paper, the authors present new indices for estimating technical change, return to scale, and TFP growth, as well as its decomposition. These indices, Modified General Index (MGI), Generalized Modified General Index (GMGI), and General Time Trend index (GTTI), are generalization of General Index approaches. These approaches were used for productivity decomposition of Iran's barely produc...

متن کامل

Mathematical modeling of a fixed bed chromatographic reactor for Fischer Tropsch synthesis

In this research, Fischer Tropsch synthesis (FTS) has been modeled in the fixed bed chromatographic reactor for the first time by applying a rather complex dispersed plug flow model for fluid phase and linear driving force (LDF) model for adsorbent. Model equations are dynamic, multi-component, non-linear and heterogeneous including reaction and adsorption simultaneously Complex kinetics fo...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

A Generalized Linear Statistical Model Approach to Monitor Profiles

Statistical process control methods for monitoring processes with univariate ormultivariate measurements are used widely when the quality variables fit to known probabilitydistributions. Some processes, however, are better characterized by a profile or a function of qualityvariables. For each profile, it is assumed that a collection of data on the response variable along withthe values of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017